Скорость движения центра масс системы. Движение центра масс системы

Дифференциальные уравнения движения системы

Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

Теорема о движении центра масс системы

Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

$R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

$\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

Из формулы (2) имеем:

Беря вторую производную по времени, получаем:

$\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

где $\overline{a}_{c} $- ускорение центра масс системы.

Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

$M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проецируя обе части равенства (5) на координатные оси, получим:

$M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение теоремы состоит в следующем:

Теорема

  • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
  • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

Пример

Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

\[\omega \] \[\alpha \]

На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

Запишем второй закон Ньютона для нашей системы:

Спроецируем обе части на оси x и y:

\[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

Разделив одно уравнение на другое, получим:

Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

Основной закон динамики можно записать в иной форме, зная понятие центра масс системы:

Это есть уравнение движения центра масс системы , одно из важнейших уравнений механики. Оно утверждает, что центр масс любой системы частиц движется так, как если бы вся масса системы была сосредоточена в этой точке и к ней были бы приложены все внешние силы .

Ускорение центра масс системы совершенно не зависит от точек приложения внешних сил.

Если , то , значит и - это случай замкнутой системы в инерциальной системе отсчета. Таким образом, если центр масс системы движется равномерно и прямолинейно, это означает, что её импульс сохраняется в процессе движения.

Пример: однородный цилиндр массы и радиуса скатывается без скольжения по наклонной плоскости, составляющей угол с горизонтом. Найти уравнение движения?

Совместное решение дает значение параметров

Уравнение движения центра масс совпадает с основным уравнением динамики материальной точки и является его обобщением на систему частиц: ускорение системы как целого пропорционально результирующей всех внешних сил и обратно пропорционально массе системы .

Систему отсчета, жестко связанную с центром масс, которая движется поступательно относительно ИСО называют системой центра масс. Ее особенностью является то, что полный импульс системы частиц в ней всегда равен нулю, так, как .

Конец работы -

Эта тема принадлежит разделу:

Кинематика поступательного движения

Физические основы механики.. кинематика поступательного движения.. механическое движение формой существования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Механическое движение
Материя, как известно, существует в двух видах: в виде вещества и поля. К первому виду относятся атомы и молекулы, из которых построены все тела. Ко второму виду относятся все виды полей: гравитаци

Пространство и время
Все тела существуют и движутся в пространстве и времени. Эти понятия являются основополагающими для всех естественных наук. Любое тело имеет размеры, т.е. свою пространственную протяженность

Система отсчета
Для однозначного определения положения тела в произвольный момент времени необходимо выбрать систему отсчета - систему координат, снабженнуя часами и жестко связаннуя с абсолютно твердым телом, по

Кинематические уравнения движения
При движении т.М ее координаты и меняются со временем, поэтому для задания закона движения необходимо указать вид фун

Перемещение, элементарное перемещение
Пусть точка М движется от А к В по криволинейному пути АВ. В начальный момент ее радиус-вектор равен

Ускорение. Нормальное и тангенциальное ускорения
Движение точки характеризуется также ускорением-быстротой изменения скорости. Если скорость точки за произвольное время

Поступательное движение
Простейшим видом механического движения твердого тела является поступательное движение, при котором прямая, соединяющая любые две точки тела перемещается вместе с телом, оставаясь параллельной| сво

Закон инерции
В основе классической механики лежат три закона Ньютона, сформулированные им в сочинении «Математические начала натуральной философии», опубликованном в 1687г. Эти законы явились результатом гениал

Инерциальная система отсчета
Известно, что механическое движение относительно и его характер зависит от выбора системы отсчета. Первый закон Ньютона выполняется не во всех системах отсчета. Например, тела, лежащие на гладком п

Масса. Второй закон Ньютона
Основная задача динамики заключается в определении характеристик движения тел под действием приложенных к ним сил. Из опыта известно, что под действием силы

Основной закон динамики материальной точки
Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно

Третий закон Ньютона
Наблюдения и опыты свидетельствуют о том, что механическое действие одного тела на другое является всегда взаимодействием. Если тело 2 действует на тело 1, то тело 1 обязательно противодействует те

Преобразования Галилея
Они позволяют определить кинематические величины при переходе от одной инерциальной системы отсчета к другой. Возьмем

Принцип относительности Галилея
Ускорение какой-либо точки во всех системах отсчета, движущихся друг относительно друга прямолинейно и равномерно одинаково:

Сохраняющиеся величины
Любое тело или система тел представляют собой совокупность материальных точек или частиц. Состояние такой системы в некоторый момент времени в механике определяется заданием координат и скоростей в

Центр масс
В любой системе частиц можно найти точку, называемую центром масс

Консервативные силы
Если в каждой точке пространства на частицу, помещенную туда, действует сила, говорят, что частица находится в поле сил, например в поле сил тяжести, гравитационной, кулоновской и других сил. Поле

Центральные силы
Всякое силовое поле вызвано действием определенного тела или системы тел. Сила, действующая на частицу в этом поле об

Потенциальная энергия частицы в силовом поле
То обстоятельство, что работа консервативной силы (для стационарного поля) зависит только от начального и конечного положений частицы в поле, позволяет ввести важное физическое понятие потенциально

Связь между потенциальной энергией и силой для консервативного поля
Взаимодействие частицы с окружающими телами можно описать двумя способами: с помощью понятия силы или с помощью понятия потенциальной энергии. Первый способ более общий, т.к. он применим и к силам

Кинетическая энергия частицы в силовом поле
Пусть частица массой движется в силов

Полная механическая энергия частицы
Известно, что приращение кинетической энергии частицы при перемещении в силовом поле равно элементарной работе всех сил, действующих на частицу:

Закон сохранения механической энергии частицы
Из выражения следует, что в стационарном поле консервативных сил полная механическая энергия частицы может изменяться

Кинематика
Поворот тела на некоторый угол можно

Момент импульса частицы. Момент силы
Кроме энергии и импульса существует ещё одна физическая величина, с которой связан закон сохранения - это момент импульса. Моментом импульса частицы

Момент импульса и момент силы относительно оси
Возьмем в интересующей нас системе отсчета произвольную неподвижную ось

Закон сохранения момента импульса системы
Рассмотрим систему, состоящую из двух взаимодействующих частиц, на которые действуют также внешние силы и

Таким образом, момент импульса замкнутой системы частиц остается постоянным, не изменяется со временем
Это справедливо относительно любой точки инерциальной системы отсчета: . Моменты импульса отдельных частей системы м

Момент инерции твердого тела
Рассмотрим твердое тело, которое мож

Уравнение динамики вращения твердого тела
Уравнение динамики вращения твердого тела можно получить, записав уравнение моментов для твердого тела, вращающегося вокруг произвольной оси

Кинетическая энергия вращающегося тела
Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси, проходящей через него. Разобьем его на частицы с малыми объемами и массами

Работа вращения твердого тела
Если тело приводится во вращение силой

Центробежная сила инерции
Рассмотрим диск, который вращается вместе с шариком на пружине, надетой на спицу, рис.5.3. Шарик находится

Сила Кориолиса
При движении тела относительно вращающейся СО, кроме, появляется ещё одна сила-сила Кориолиса или кориолисова сила

Малые колебания
Рассмотрим механическую систему, положение которой может быть определено с помощъю одной величины, например х. В этом случае говорят, что система имеет одну степень свободы.Величиной х может быть

Гармонические колебания
Уравнение 2-го Закона Нъютона в отсутствие сил трения для квазиупругой силы вида имеет вид:

Математический маятник
Это материальная точка, подвешенная на нерастяжимой нити длиною, совершающая колебания в вертикальной плоск

Физический маятник
Это твердое тело, совершающее колебания вокруг неподвижной оси, связанной с телом. Ось перпендикулярна рисунку и нап

Затухающие колебания
В реальной колебательной системе имеются силы сопротивления, действие которых приводят к уменьшению потенциальной энергии системы, и колебания будут затухающими.В простейшем случае

Автоколебания
При затухающих колебаниях энергия системы постепенно уменьшается и колебания прекращаются. Для того, чтобы их сделать незатухающими, необходимо пополнять энергию системы извне в определенные момент

Вынужденные колебания
Если колебательная система, кроме сил сопротивления, подвергается действию внешней периодической силы, изменяющейся по гармоническому закону

Резонанс
Кривая зависимости амплитуды вынужденых колебаний от приводит к тому, что при некоторой определенной для данной систе

Распространение волн в упругой среде
Если в каком либо месте упругой среды (твёрдой, жидкой, газообразной) поместить источник колебаний, то из-за взаимодействия между частицами колебание будет распространяться в среде от частицы к час

Уравнение плоской и сферической волн
Уравнение волны выражает зависимость смещения колеблющейся частицы от ее кординат,

Волновое уравнение
Уравнение волны является решением дифференциального уравнения, называемого волновым. Для его установления найдем вторые частные производные по времени и координатам от урав

Допустим, что у нас есть некоторая система, состоящая из n -ного количества материальных точек. Возьмем одну из них и обозначим ее массу как m k . Приложенные к точке внешние силы (как активные силы, так и реакции связей) имеют равнодействующую F k e . Внутренние силы имеют равнодействующую F k l . Наша система находится в движении, следовательно, нужная точка будет иметь ускорение a k . Зная основной закон динамики, мы можем записать следующую формулу:

m k a k = F k e + F k l .

Ее можно применить к любой точке системы. Значит, для всей системы целиком можно сформулировать следующие уравнения:

m 1 a 1 = F 1 e + F 1 l , m 2 a 2 = F 2 e + F 2 l , ⋯ m n a n = F n e + F n l .

Данная формула состоит из дифференциальных уравнений, описывающих движение системы в векторной форме. Если мы спроецируем эти равенства на соответствующие координатные оси, то у нас получатся дифференциальные уравнения движения в проекциях. Но в конкретных задачах чаще всего вычислять движение каждой точки системы не требуется: можно ограничиться характеристиками движения всей системы в целом.

Движение центра масс: основная теорема

Характер движения системы можно определить, зная закон, по которому движется ее центр масс.

Определение 1

Центр инерции системы (центр масс) – это воображаемая точка с радиус-вектором R , выражаемым через радиус-векторы r 1 , r 2 , . . . соответствующих материальных точек по формуле R = m 1 r 1 + m 2 r 2 + . . . + m n r n m .

Здесь сумма показателей в числителе m = m 1 + m 2 + . . . + m 3 выражает общую массу всей системы.

Для нахождения этого закона нам нужно взять уравнения движения системы, приведенные в предыдущем пункте, и сложить их правые и левые части. У нас получится, что:

∑ m k a k ¯ = ∑ F k ¯ e + ∑ F k ¯ l .

Взяв формулу радиус-вектора центра масс, получим следующее:

∑ m k r k = M r c .

Теперь возьмем вторую производную по времени:

∑ m k a k = M a c .

Здесь буквой a c ¯ обозначено ускорение, которое приобретает центр масс системы.

Определение 2

Свойство внутренних сил в системе гласит, что F k l равно нулю, значит, окончательное равенство будет выглядеть так:

M a c ¯ = ∑ F k ¯ e .

Это уравнение является записью закона движения центра масс . Запишем его:

Движение центра масс системы идентично движению материальной точки той же массы, что и вся система целиком, к которой приложены все действующие на систему внешние силы.

Иначе говоря, произведение ускорения центра масс системы на массу самой системы будет равно геометрической сумме всех внешних сил, действующих на эту систему.

Возьмем полученное выше уравнение и спроецируем его правую и левую части на соответствующие координатные оси. У нас получится:

M x c ¨ = ∑ F k x ¯ e , M y c ¨ = ∑ F k y ¯ e , M z c ¨ = ∑ F k z ¯ e .

Эти равенства являются дифференциальными уравнениями движения центра масс в проекции на оси в декартовой системе координат.

Данная теорема имеет большую практическую ценность. Поясним, в чем именно она заключается.

Теорема 1

  1. Любое тело, движущееся поступательно, может быть рассмотрено в качестве материальной точки, масса которой равна массе всего тела. Во всех других случаях такой подход возможен лишь тогда, когда для определения положения тела в пространстве нам будет достаточно знать, в каком положении находится его центр масс. Также важно, чтобы условия задачи допускали исключение вращательной части движения тела.
  2. С помощью теоремы движения центра масс системы мы можем не рассматривать в задачах неизвестные нам заранее внутренние силы.

Разберем пример применения теоремы для решения практической задачи.

Пример 1

Условие: к оси центробежной машины на нити подвешено кольцо из металла. Оно совершает равномерные вращательные движения с угловой скоростью, равной ω . Вычислите, на каком расстоянии центр кольца находится от оси вращения.

Решение

Очевидно, что система находится под воздействием силы тяжести N N ¯ α α . Также необходимо учесть силу натяжения нити и центростремительное ускорение.

Второй закон Ньютона для системы будет выглядеть так:

m a ¯ = N ¯ + m g ¯ .

Теперь создадим проекции обеих частей равенства на оси абсцисс и ординат и получим:

N sin α = m a ; N cos α = m g .

Мы можем разделить одно уравнение на другое:

Поскольку a = υ 2 R , υ = ω R , то нужное нам уравнение будет выглядеть так:

R = g t g α ω 2 .

Ответ: R = g t g α ω 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Когда мы имеем дело с системой частиц, удобно найти такую точку - центр масс, которая характеризовала бы положение и движение этой системы как целого. В системе из двух одинаковых частиц такая точка С, очевидно, лежит посередине между ними (рис. 110а). Это ясно из соображений симметрии: в однородном и изотропном пространстве эта точка выделена среди всех остальных, ибо для любой другой точки А, расположенной ближе к одной из частиц, найдется симметричная ей точка В, расположенная ближе ко второй частице.

Рис. 110. Центр масс двух одинаковых частиц находится в точке С с радиусом-вектором ; центр масс двух частиц с разной массой делит отрезок между ними в отношении, обратно пропорциональном массам чатиц (б)

Очевидно, что радиус-вектор точки С равен полусумме радиусов-векторов одинаковых частиц (рис. 110а): Другими словами, представляет собой обычное среднее значение векторов

Определение центра масс. Как обобщить это определение на случай двух частиц с разными массами Можно ожидать, что наряду с геометрическим центром системы, радиус-вектор которого по-прежнему равен полусумме будет играть определенную роль точка, положение которой определяется распределением

ем масс. Ее естественно определить так, чтобы вклад каждой частицы был пропорционален ее массе:

Определяемый формулой (1) радиус-вектор центра масс представляет собой среднее взвешенное значение радиусов-векторов частиц что очевидно, если переписать (1) в виде

Радиус-вектор каждйй частицы входит в с весом, пропорциональным ее массе. Легко видеть, что определяемый формулой (1) центр масс С лежит на отрезке прямой, соединяющей частицы, и делит его в отношении, обратно пропорциональном массам частиц: (рис. 110б).

Обратим внимание на то, что приведенное здесь определение центра масс связано с известным вам условием равновесия рычага. Представим себе, что точечные массы на которые действует однородное поле тяжести, соединены стержнем пренебрежимо малой массы. Такой рычаг будет в равновесии, если точку его опоры поместить в центр масс С.

Естественным обобщением формулы (1) на случай системы, состоящей из материальных точек с массами и радиусами-векторами является равенство

которое служит определением радиуса-вектора центра масс (или центра инерции) системы.

Скорость центра масс. Центр масс характеризует не только положение, но и движение системы частиц как целого. Скорость центра масс, определяемая равенством как следует из (2), следующим образом выражается через скорости образующих систему частиц:

В числителе правой части этого выражения, как следует из формулы (6) предыдущего параграфа, стоит полный импульс системы Р, а в знаменателе - ее полная масса М. Поэтому импульс системы частиц равен произведению массы всей системы М на скорость ее центра масс

Формула (4) показывает, что импульс системы связан со скоростью ее центра масс точно так же, как импульс отдельной частицы связан со скоростью частицы. Именно в этом смысле движение центра масс и характеризует движение системы как целого.

Закон движения центра масс. Закон изменения импульса системы частиц, выражаемый формулой (9) предыдущего параграфа, по существу представляет собой закон движения ее центра масс. В самом деле, из (4) при неизменной полной массе М системы имеем

что означает, что скорость изменения импульса системы равна произведению ее массы на ускорение центра масс. Сравнивая (5) с формулой (6) § 29, получаем

Согласно (6) центр масс системы движется так, как двигалась бы одна материальная точка массы М под действием силы, равной сумме всех внешних сил, действующих на входящие в систему частицы. В частности, центр масс замкнутой физической системы, на которую внешние силы не действуют, движется в инерциальной системе отсчета равномерно и прямолинейно либо покоится.

Представление о центре масс в ряде случаев позволяет получить ответы на некоторые вопросы еще проще, чем при непосредственном использовании закона сохранения импульса. Рассмотрим следующий пример.

Космонавт вне корабля. Космонавт массы неподвижный относительно космического корабля массы с выключенным двигателем, начинает подтягиваться к кораблю с помощью легкого страховочного фала. Какие расстояния пройдут космонавт и корабль до встречи, если первоначально расстояние между ними равно

Центр масс корабля и космонавта находится на соединяющей их прямой, причем соответствующие расстояния обратно пропорциональны массам Так как то

сразу получаем

В далеком космосе, где внешние силы отсутствуют, центр масс этой замкнутой системы либо покоится, либо движется с постоянной скоростью. В той системе отсчета, где он покоится, космонавт и корабль пройдут до встречи расстояния , даваемые формулами (7).

Для справедливости подобных рассуждений принципиально важно использовать инерциальную систему отсчета. Если бы здесь мы опрометчиво связали систему отсчета с космическим кораблем, то пришли бы к заключению, что при подтягивании космонавта центр масс системы приходит в движение в отсутствие внешних сил: он приближается к кораблю. Центр масс сохраняет свою скорость только относительно инерциальной системы отсчета.

В уравнение (6), определяющее ускорение центра масс системы частиц, не входят действующие в ней внутренние силы. Значит ли это, что внутренние силы вообще никак не влияют на движение центра масс? В отсутствие внешних сил или когда эти силы постоянны, это действительно так. Например, в однородном поле тяжести центр масс разорвавшегося в полете снаряда продолжает движение по той же параболе, пока ни один из осколков еще не упал на землю.

Роль внутренних сил. В тех случаях, когда внешние силы могут изменяться, дело обстоит несколько сложнее. Внешние силы действуют не на центр масс, а на отдельные частицы системы. Эти силы могут зависеть от положения частиц, а положение каждой частицы при ее движении определяется всеми действовавшими на нее силами, как внешними, так и внутренними.

Поясним это на том же простом примере снаряда, разрывающегося в полете на мелкие осколки под действием внутренних сил. Пока все осколки в полете, центр масс, как уже говорилось, продолжает движение по той же параболе. Однако как только хотя бы один из осколков коснется земли и его движение прекратится, добавится новая внешняя сила - сила реакции поверхности земли, действующая на упавший осколок. В результате изменится ускорение центра масс, и он уже не будет двигаться по прежней параболе. Само появление этой силы реакции является следствием действия внутренних сил, разорвавших снаряд. Итак, действие внутренних сил в момент разрыва снаряда может привести к изменению ускорения, с которым будет двигаться центр масс в более поздние моменты времени и, следовательно, к изменению его траектории.

Приведем еще более яркий пример влияния внутренних сил на движение центра масс. Представим себе, что спутник Земли,

обращающийся вокруг нее по круговой орбите, под действием внутренних сил разделяется на две половины. Одна из половин останавливается и начинает отвесно падать на Землю. По закону сохранения импульса вторая половина должна в этот момент вдвое увеличить свою скорость, направленную по касательной к окружности. Как мы увидим ниже, при такой скорости эта половина улетит от Земли на бесконечно большое расстояние. Следовательно, и центр масс спутника, т. е. двух его половин, также удалится на бесконечно большое расстояние от Земли. И причина тому - действие внутренних сил при разделении спутника на две части, так как в противном случае неразделившийся на части спутник продолжал бы движение по круговой орбите.

Реактивное движение. Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сжигании топлива повышается температура и в камере сгорания создается высокое давление, благодаря чему образовавшиеся газы с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Уравнение Мещерского. Получим уравнение, описывающее движение ракеты. Пусть в некоторый момент времени ракета в какой-то инерциальной системе отсчета имеет скорость Введем другую инерциальную систему отсчета, в которой в данный момент времени ракета неподвижна. Назовем такую систему отсчета сопутствующей. Если работающий двигатель ракеты за промежуток выбрасывает газы массы со скоростью относительно ракеты, то спустя время скорость ракеты в этой сопутствующей системе будет отлична от нуля и равна

Применим к рассматриваемой замкнутой физической системе ракета плюс газы закон сохранения импульса. В начальный момент в сопутствующей системе отсчета ракета и газы покоятся, поэтому полный импульс равен нулю. Спустя время импульс ракеты равен а импульс выброшенных газов Поэтому

Полная масса системы ракета плюс газы сохраняется, поэтому масса выброшенных газов равна убыли массы ракеты:

Теперь уравнение (8) после деления на промежуток времени переписывается в виде

Переходя к пределу получаем уравнение движения тела переменной массы (ракеты) в отсутствие внешних сил:

Уравнение (9) имеет вид второго закона Ньютона, если его правую часть рассматривать как реактивную силу, т. е. силу, с которой действуют на ракету вылетающие из нее газы. Масса ракеты здесь не постоянна, а убывает со временем из-за потери вещества, т. е. Поэтому реактивная сила; направлена в сторону, противоположную скорости вылетающих из сопла газов относительно ракеты. Видно, что эта сила тем больше, чем больше скорость истечения газов и чем выше расход топлива в единицу времени.

Уравнение (9) получено в определенной инерциальной системе отсчета - сопутствующей системе. Вследствие принципа относительности оно справедливо и в любой другой инерциальной системе отсчета. Если, кроме реактивной силы, на ракету действуют и какие-либо другие внешние силы например сила тяжести и сила сопротивления воздуха, то их следует добавить в правую часть уравнения (9):

Это уравнение впервые было получено Мещерским и носит его имя. При заданном режиме работы двигателя, когда масса представляет собой определенную известную функцию времени, уравнение Мещерского позволяет рассчитать скорость ракеты в любой момент времени.

Какие физические соображения свидетельствуют о целесообразности определения центра масс с помощью формулы (1)?

В каком смысле центр масс характеризует движение системы частиц как целого?

О чем говорит закон движения центра масс системы взаимодействующих тел? Влияют ли внутренние силы на ускорение центра масс?

Могут ли внутренние силы влиять на траекторию центра масс системы?

В задаче о разрыве снаряда, рассмотренной в предыдущем параграфе, закон движения центра масс позволяет сразу найти дальность полета второго осколка, если его начальная скорость горизонтальна. Как это сделать? Почему эти соображения неприменимы в случае, когда его начальная скорость имеет вертикальную составляющую?

В процессе разгона ракеты ее двигатель работает в постоянном режиме, так что относительная скорость истечения газов и расход топлива в единицу времени неизменны. Будет ли при этом ускорение ракеты постоянным?

Выведите уравнение Мещерского, используя вместо сопутствующей системы отсчета инерциальную систему, в которой ракета уже имеет скорость

Формула Циолковского. Допустим, что разгон ракеты происходит в свободном пространстве, где на нее не действуют внешние силы. По мере вырабатывания топлива масса ракеты убывает. Найдем зависимость между массой израсходованного топлива и набранной ракетой скоростью.

После включения двигателя покоившаяся ракета начинает набирать скорость, двигаясь по прямой линии. Спроецировав векторное уравнение (9) на направление движения ракеты, получим

Будем в уравнении (11) рассматривать массу ракеты как функцию набранной ракетой скорости Тогда скорость изменения массы со временем можно представить следующим образом: