Основные формулы комбинаторики. Комбинаторика: формула перестановки, размещения

Основные правила комбинаторики.

Комбинаторика - это раздел математики, изучающий способы расположения объектов в соответствии со специальными правилами и методы подсчета числа всех возможных способов. Правило умножения. Если некоторый выбор A можно осуществить m способами, а для каждого из них некоторый другой выбор B можно осуществить n способами, то выбор A и B (в указанном порядке) можно осуществить m×n способами. Пример 1. На гору ведут 6 дорог. Сколькими способами можно подняться на гору и спуститься с горы, если подъем и спуск должен быть по разным дорогам? Решение. Дорогу на гору можно выбрать 6-ю способами, так как подъем и спуск должны быть по разным дорогам, то выбрать дорогу для спуска можно 5-ю способами. Тогда по правилу умножения число способов выбора дороги для подъема и спуска равно 6×5=30. Правило сложения. Если некоторый выбор A можно осуществить m способами, а выбор B можно осуществить n способами, то выбор A или B можно осуществить m+n способами. Пример 2. В ящике имеется 6 красных карандашей, 5 синих и 3 простых карандаша. Сколькими способами можно выбрать цветной карандаш? Решение. Цветной карандаш - это красный или синий, следовательно, по правилу сложения число способов выбора цветного карандаша равно 6+5=11. Замечание. Данные правила можно обобщить на большее число выборов. Вопрос. Сколько основных правил комбинаторики существует?

Перестановки.

Определение 1. Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое натуральное число от 1 до n, где n - это число элементов данного множества, причем разным элементам поставлены в соответствие разные числа.

Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком. Определение 2. Различные упорядоченные множества, составленные из элементов данного множества, отличающиеся лишь порядком элементов, называются его перестановками. Пример 3. Рассмотрим множество M={a,b,c}. Это множество из трех элементов. Составим его различные перестановки: (a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a). Получили 6 перестановок. P n - число всех перестановок множества из n элементов.

P n =n! (1), где

n!=1·2·3·...·n (читается "н факториал"). Замечание. 0!=1; (n+1)!=n!·(n+1) . Пример 4. Сколько шестизначных чисел, кратных пяти, можно составить из цифр 0,1,2,3,4,5, при условии, что в числе нет одинаковых цифр? Решение. Числа, кратные пяти(делящиеся на пять), оканчиваются либо на 0, либо на 5. Если последняя цифра числа 0, то остальные цифры можно располагать в любом порядке, получим перестановки из пяти элементов, их P 5 =5!=120. Если на конце 5, то остальные можно расположить P 5 =120 способами, но среди них не подходят те, которые начинаются на 0, так как это будут не шестизначные числа. а пятизначные, данных чисел P 4 =4!=24.Тогда требуемых чисел будет 120+120-24=216.

Вопрос. Сколько существует перестановок из шести элементов?

Ваш ответ : 720

Перестановки с повторениями.

Если взять цифры 1, 2, 3, 4, то из них можно составить 24 перестановки. Но если взять четыре цифры 1, 1, 2, 2, то можно получить только следующие различные перестановки: (1,1,2,2),(1,2,1,2),(1,2,2,1),((2,2,1,1),(2,1,2,1),(2,1,1,2), то есть шесть перестановок, их в 4 раза меньше, чем перестановок из четырех различных чисел, так как перестановки, в которых меняются местами одинаковые числа - это не новые перестановки, их 2!·2!=4. Рассмотрим задачу в общем виде:пусть имеется множество из элементов, в котором элементы встречаются раз, элементы встречаются раз,..., элементы встречаются раз, причем .

Определение 3. Перестановки с повторениями - это перестановки из элементов данного множества, в которых элементы повторяются. - число всех перестановок с повторениями. Число перестановок, не меняющих данную перестановку с повторениями равно , а чисел можно переставлять способами, поэтому получаем следующую формулу для вычисления числа перестановок с повторениями:

Пример 4. Сколькими способами можно расселить 8 студентов по трем комнатам: одноместной, трехместной и четырехместной? Решение. Различныеспособы расселения студентов по комнатам являются перестановками с повторениями, так как внутри, например, трехместной комнаты выбранные студенты могут занимать спальные места по-разному, но эти варианты не будут являться новыми перестановками, поэтому получаем: То есть всего 280 способов расселения студентов. Вопрос. Вычислить

Сочетания.

Пусть некоторое множество содержит n элементов.

Определение 4. Всякое m- элементное подмножество n- элементного множества называется сочетанием из n элементов по m. - число всех сочетаний.

(3)

Пример 5. Для соревнований из 30 спортсменов надо выбрать трех человек. Сколькими способами это можно сделать? Решение. Команда из 3 спортсменов - это подмножество из трех элементов, то есть сочетание из 30 по 3, поэтому количество способов выбора таких команд вычисляется по формуле (3): .

Свойства сочетаний.

1. 2. . Из данных свойств следует, что , тогда , далее , , и так далее. Можно расположить эти числа в виде таблицы:

.....................................................

.......................

Эта таблица в виде треугольника называется треугольником Паскаля.

Определение 5. Выражение a+b называется биномом.

Формула (4) называется биномиальной формулой Ньютона, а коэффициенты называются биномиальными коэффициентами. Из данной формулы вытекает следующее свойство числа сочетаний

Вопрос. .

Сочетания с повторениями

Пусть имеется множество, содержащее n видов элементов, поэтому есть взять какое-то подмножество этого множества, то в нем могут быть одинаковые элементы. Определение 6. Сочетание с повторениями - это m- элементное подмножество множества, содержащего n видов элементов, в котором элементы повторяются. - число всех сочетаний с повторениями из n по m. Состав m- элементного подмножества имеет вид , где . Заменяя каждое из чисел соответствующим количеством единиц и разделяя единицы нулями, получаем набор, состоящий из m единиц и n-1 нулей. Каждому составу отвечает только одна запись из нулей и единиц, а каждая запись задает только один состав, следовательно, число различных составов равно числу перестановок с повторениями из n-1 нулей и m единиц. Получаем формулу для вычисления всех сочетаний с повторениями.

(5)

Пример 6. В кондитерском магазине продаются пирожные четырех видов: наполеоны, эклеры, песочные и бисквитные. Сколькими способами можно купить 7 пирожных? Решение. Любая покупка - это подмножество, в котором могут быть одинаковые элементы, поэтому это сочетание с повторениями. Число всех возможных покупок находим по формуле (5): . Вопрос. В формуле (5) m может быть больше n.

Размещения

Определение 7. Упорядоченное m - элементное подмножество n- элементного множества называется размещением. - число всех размещений из n элементов по m. Число всех размещений из n по m больше числа всех сочетаний из n по m, так как из каждого подмножества из m элементов с помощью перестановок можно получить m! упорядоченных подмножеств, получаем формулу для числа размещений

(6)

Пример 7. В группе 25 человек. Нужно выбрать актив группы: старосту, заместителя старосты и профорга. Сколькими способами это можно сделать? Решение. Актив группы - это упорядоченное подмножество из трех элементов, так как надо выбрать не только трех человек, но и распределить между ними должности, значит актив группы - это размещение, число всех размещений вычисляем по формуле (6): . Вопрос. Во сколько раз число сочетаний из 20 по 4 меньше числа размещений из 20 по 4?

Размещения с повторениями

Пусть дано множество из n элементов, в котором есть одинаковые элементы, тогда его подмножества тоже могут содержать одинаковые элементы. Определение 8. Упорядоченные m- элементные подмножества n- элементного множества, в которых элементы могут повторяться, называются размещениями с повторениями. - число всех размещений из n по m. В подмножестве из m элементов первый элемент можно выбрать n способами(то есть любой элемент множества) , так как элементы могут повторяться, то второй элемент тоже можно выбрать n способами, аналогично остальные элементы подмножества можно выбрать n способами, если воспользоваться правилом умножения, получим формулу для вычисления числа размещений с повторениями:

Пример 8. В лифт десятиэтажного дома вошли 5 человек. Каждый из них может выйти на любом этаже, начиная со второго. Сколькими способами они могут это сделать? Решение. Так как каждый человек может выйти на любом этаже, начиная со второго, то этажей для выхода 9. Надо выбрать этажи для возможности выхода каждого человека: для первого человека - можно выбрать любой из девяти этажей, аналогично для остальных пассажиров, тогда по формуле (7): способов. Вопрос. Вычислить .

КОМБИНАТОРИКА

Комбинаторика - раздел математики, который изучает задачи выбора и расположения элементов из некоторого основного множества в соответствии с заданными правилами. Формулы и принципы комбинаторики используются в теории вероятностей для подсчета вероятности случайных событий и, соответственно, получения законов распределения случайных величин. Это, в свою очередь, позволяет исследовать закономерности массовых случайных явлений, что является весьма важным для правильного понимания статистических закономерностей, проявляющихся в природе и технике.

Правила сложения и умножения в комбинаторике

Правило суммы. Если два действия А и В взаимно исключают друг друга, причем действие А можно выполнить m способами, а В - n способами, то выполнить одно любое из этих действий (либо А, либо В) можно n + m способами.

Пример 1.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить одного дежурного?

Решение

Дежурным можно назначить либо мальчика, либо девочку, т.е. дежурным может быть любой из 16 мальчиков, либо любая из 10 девочек.

По правилу суммы получаем, что одного дежурного можно назначить 16+10=26 способами.

Правило произведения. Пусть требуется выполнить последовательно k действий. Если первое действие можно выполнить n 1 способами, второе действие n 2 способами, третье - n 3 способами и так до k-го действия, которое можно выполнить n k способами, то все k действий вместе могут быть выполнены:

способами.

Пример 2.

В классе учится 16 мальчиков и 10 девочек. Сколькими способами можно назначить двух дежурных?

Решение

Первым дежурным можно назначить либо мальчика, либо девочку. Т.к. в классе учится 16 мальчиков и 10 девочек, то назначить первого дежурного можно 16+10=26 способами.

После того, как мы выбрали первого дежурного, второго мы можем выбрать из оставшихся 25 человек, т.е. 25-ю способами.

По теореме умножения двое дежурных могут быть выбраны 26*25=650 способами.

Сочетания без повторений. Сочетания с повторениями

Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из n различных предметов ?

Пример 3.

Необходимо выбрать в подарок 4 из 10 имеющихся различных книг. Сколькими способами можно это сделать?

Решение

Нам из 10 книг нужно выбрать 4, причем порядок выбора не имеет значения. Таким образом, нужно найти число сочетаний из 10 элементов по 4:

.

Рассмотрим задачу о числе сочетаний с повторениями: имеется по r одинаковых предметов каждого из n различных типов; сколькими способами можно выбрать m () из этих (n*r) предметов?

.

Пример 4.

В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение

Т.к. среди 7 пирожных могут быть пирожные одного сорта, то число способов, которыми можно купить 7 пирожных, определяется числом сочетаний с повторениями из 7 по 4.

.

Размещения без повторений. Размещения с повторениями

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?

Пример 5.

В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии. Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение.

В данной задаче мы не просто выбираем фотографии, а размещаем их на определенных страницах газеты, причем каждая страница газеты должна содержать не более одной фотографии. Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой можно выразить вопросом: сколькими способами можно вы б рать и разместить по m различным местам m из n предметов, с реди которых есть одинаковые?

Пример 6.

У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих штампов нанести на все книги пятизначные номера- составить каталог. Сколько различных пятизначных номеров может составить мальчик?

Перестановки без повторений . Перестановки с повторениями

Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?

Пример 7.

Сколько можно составить четырехбуквенных «слов» из букв слова«брак»?

Решение

Генеральной совокупностью являются 4 буквы слова «брак» (б, р, а, к). Число «слов» определяется перестановками этих 4 букв, т. е.

Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Пример 8.

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение

Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв. Следовательно, число перестановок с повторениями равно

ОПОРНЫЙ КОНСПЕКТ ПО РАЗДЕЛУ "КОМБИНАТОРИКА"

Конспект урока по теме «Элементы комбинаторики»

Цели:

О бучающие:

Формирование основных понятий комбинаторики: размещения из mэлементов по n, сочетания из m элементов по n, перестановки из nэлементов;

Формирование умений и навыков вычисления значений комбинаторных выражений по формулам, решения простейших комбинаторных задач;

Развивающие:

Развитие умения анализировать, обобщать изучаемые факты, выделять и сравнивать существенные признаки, выбирать наиболее эффективные способы решения задач в зависимости от конкретных условий; рефлексия способов и условий действия; контроль и оценка процесса и результатов деятельности;

Воспитательные:

Воспитание интереса к дисциплине, честности, аккуратности, эстетического отношения к оформлению математических решений, воспитание умения слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие, настойчивости в достижении цели и заинтересованности в конечном результате труда; прививать чувство патриотизма.

Обучающийся должен:

знать:

Определения трех важнейших понятий комбинаторики:

Размещения из n элементов по m;

Сочетания из n элементов по m;

Перестановки из n элементов, а также, формулы вычисления их количества.

уметь:

Отличать задачи на «перестановки», «сочетания», «размещения» друг от друга;

Применять основные комбинаторные формулы при решении простейших комбинаторных задач.

ХОД УРОКА

1. Организационный момент.

Ребята, каждая группа в течении года дежурит по техникуму.

Являются ли бригады дежурных в группах постоянными? Скажите, а сколько всего существует способов назначить из n студентов группы mдежурных. В математике есть раздел, который занимается решением подобных задач. Этот раздел называется комбинаторикой.

2. Сообщение темы, целей урока.

Тема сегодняшнего урока «Основные понятия комбинаторики». Давайте вместе попробуем сформулировать цели урока

Ознакомиться с основными понятиями комбинаторики (размещения, сочетания, перестановки)

Научиться решать простейшие комбинаторные задачи

3. Актуализация опорных знаний.

Прежде чем перейти к изучению нового материала, повторим то, что имеет к нему непосредственное отношение. Это уже известное вам понятие «факториал». Итак, кто помнит, что называют «n-факториалом»? Запишите формулу.

Чему, к примеру, равны 2!, 3!, 4!, 5!, 6! ? А кто сможет показать вычисления на доске? А чему равен 1! ? 0! ? Какие значения в данном случае может принимать n?

4. Изложение нового материала.

4.1. Введение общих понятий

Комбинаторикой называют область математики, которая изучает вопросы о числе различных комбинаций (удовлетворяющих тем или иным условиям), которые можно составить из данных элементов.

Комбинаторика – раздел математики, в котором исследуются и решаются задачи выбора элементов из исходного множества и расположения их в некоторой комбинации, составляемой по заданным правилам.

Группы, составленные из каких-либо элементов, называются соединениями .

Различают три вида соединений: размещения , перестановки и сочетания .

Задачи, в которых производится подсчет возможных различных соединений, составленных из конечного числа элементов по некоторому правилу, называются комбинаторными , а раздел математики, занимающийся их решением, - комбинаторикой . Рассмотрим три основных вида соединений и формулы вычисления их количества. Для этого сначала рассмотрим 2 задачи, которые помогут нам сосредоточиться на сути новых понятий.

4.2. Создание проблемной ситуации.

Тексты двух задач на слайде:

Задача 1. В некотором учреждении имеются две различные вакантные должности, на каждую из которых претендуют три сотрудника: A, B, C. Сколькими способами из этих трех кандидатов можно выбрать два лица на эти должности?

Задача 2. Для участия в соревнованиях требуется выбрать двоих спортсменов из трех кандидатов: A, B, C. Сколькими способами можно осуществить этот выбор?

Студентам предлагается два проблемных задания: 1) установить различие между этими двумя внешне схожими задачами и 2) предположить, в какой задаче результат будет больше, и почему. После этого предлагается решить эти задачи методом перебора всевозможных вариантов.

Р ешение задачи 1. AB, BA, BC, CB, AC, CA (всего шесть способов).

Решение задачи 2. AB, BC, AC (всего три способа).

Преподаватель обращает внимание студентов на то, что эти задачи оказались похожими только внешне, из-за того, что в обеих присутствуют два числа: m=3 – общее количество элементов и n=2 – количество выбранных элементов. Но в первой задаче составляются упорядоченные соединения, тогда как во второй задаче порядок следования элементов в соединении не имеет значения.

А если вместо чисел 3 и 2 будут например числа 8 и 3. Подойдет ли этот метод для решения этих задач? Поэтому существуют комбинаторные выражения (формулы) для этих соединений

5.3. Лекция «Основные комбинаторные понятия и формулы».

1) Размещения.

Определение. Размещениями из m элементов по n элементов (n ≤ m) называются такие соединения, каждое из которых содержит n элементов, взятых из m данных разных элементов, и которые отличаются одно от другого либо самими элементами, либо порядком их расположения.

Число размещений из m элементов по n обозначают (от французского «arrangement» - «размещение») и вычисляют по формуле:

Пример 1. Решим задачу 1 с помощью этой формулы:

2) Перестановки.

Определение. Перестановкой из n элементов называют размещение из n элементов по n.

Число перестановок из n элементов обозначается и вычисляется по формуле:

Задача. Сколькими способами можно расположить в столбик три детали конструктора, различающиеся по цвету?

Ответ:6.

3) Сочетания.

Определение.

Сочетаниями из m элементов по n элементов (n ≤ m) называются такие соединения, каждое из которых содержит n элементов, взятых из m данных элементов, и которые отличаются друг от друга по крайней мере одним элементом.

Число сочетаний из n элементов по m обозначают (от французского «combination» - «сочетание») и вычисляют по формуле:

Пример 2. Решим задачу 2 с помощью этой формулы:

А теперь решим ту же задачу для случая m=8, n=3:

Снова, как и ожидалось, результат в первой задаче оказался больше, чем во второй.

Мы рассмотрели теоретические основы комбинаторики. Теперь перейдем к этапу закрепления новых знаний при решении задач.

6. Закрепление материала

6.1. Игра «Математическое лото»

Студентам раздаются наборы раздаточных материалов «Математического лото» (по одному на парту). Каждый комплект состоит из 16 математических заданий по основам комбинаторики, картонного листа в виде матрицы размерности 4 на 4 с написанными в ячейках числами-ответами и цветной фотографии, разрезанной на 16 равных прямоугольника. Все части фотографии пронумерованы в соответствии с порядком заданий и перемешаны. Задача студентов – решить 16 заданий, соответствующие частям разрезанной фотографии, и в соответствии с полученными числовыми ответами отыскать их место на картонной матрице, сложив в итоге фото. Задание выполняется как соревнование между малыми группами По 3-4 человека. Определяются три пары, которые не только сложат картинку раньше всех, но и представят в письменном виде все подробные решения.

Перед началом игры преподаватель мотивирует студентов на активное участие в ней, сообщая, что это упражнение позволит наилучшим образом сформировать навыки комбинаторных вычислений, что значительно упростит выполнение домашнего задания. Кроме того, выполняя это упражнение, можно совместить полезное с приятным, так как результат вызовет эстетические чувства.

Задания.

Вычислите.

, , , , , , , , , , , ,
,
,
,
.

Решения:

В завершении игры объявляются и поощряются победители.

6.2. Решение комбинаторных задач.

При решении комбинаторных задач важно научиться различать виды соединений.

Чтобы отличать задачи на подсчёт числа размещений от задач на подсчёт числа сочетаний, определим, важен или нет порядок в следующих выборках:

а) судья хоккейного матча и его помощник;

б) три ноты в аккорде;

в) «Шесть человек останутся убирать класс!»

г) две серии для просмотра из многосерийного фильма.

Ответ: а)да; б)нет; в)нет; г)да.

Задача 1. Сколькими способами могут занять I, II, III места 8 участниц финального забега на дистанции 100 м?

Ответ: 366.

Задача 2. Из 30 обучающихся группы надо выбрать старосту и помощника старосты. Сколькими способами это можно сделать?

Ответ: 870.

Задача 3. Сколькими способами можно составить букет из трёх цветков, выбирая цветы из девяти имеющихся?

Ответ: 84.

Задача 4. В группе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Ответ:21

6.3 Самостоятельная работа

Проверь себя

1 .Определите вид соединений:

а) Соединения из n элементов, отличающиеся друг от друга только порядком расположения в них элементов, называются __________ перестановки

б) Соединения из m элементов по n , отличающихся друг от друга только составом элементов, называются _______________ сочетания

в) Соединения из m элементов по n , отличающихся друг от друга составом элементом и порядком их расположения, называются _________ размещения

2 .Восстановите соответствие типов соединений и формул для их подсчёта


А.сочетания Ответ:

Подведение итогов самостоятельной работы

7. Подведение итогов урока

Обобщаются новые знания, делаются выводы о достигнутых целях урока. Поощряются активные студенты, выставляются обоснованные преподавателем оценки.

8. Домашнее задание

Подготовка сообщений по темам: «Истории комбинаторики», «Комбинаторика и ее применение в реальной жизни».

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиально возможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из n i элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n 1 *n 2 *n 3 *...*n k .

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n 1 элементов, а вторая - из n 2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n 2 . Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n 2 . Так как в первой группе всего n 1 элемент, всего возможных вариантов будет n 1 *n 2 .

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?
Решение: n 1 =6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n 2 =7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n 3 =4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).
Итак, N=n 1 *n 2 *n 3 =6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n 1 =n 2 =...n k =n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно n k . Такой способ выбора в комбинаторики носит название выборки с возвращением.

Пример 3. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?
Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=5 4 =625.

Рассмотрим множество, состоящие из n элементов. Это множество в комбинаторике называется генеральной совокупностью .

Число размещений из n элементов по m

Определение 1. Размещением из n элементов по m в комбинаторике называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 4. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений в комбинаторике обозначается A n m и вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5 . Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?
Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m в комбинаторике называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6 . Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний из n элементов по m

Число сочетаний обозначается C n m и вычисляется по формуле:

Пример 7. Сколькими способами читатель может выбрать две книжки из шести имеющихся?

Решение: Число способов равно числу сочетаний из шести книжек по две, т.е. равно:

Перестановки из n элементов

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается P n и вычисляется по формуле P n =n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P 7 =7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример 9. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?
Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок , которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Задачи для самопроверки
1. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

2. Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

3. В классе десять предметов и пять уроков в день. Сколькими способами можно составить расписание на один день?

4. Сколькими способами можно выбрать 4 делегата на конференцию, если в группе 20 человек?

5. Сколькими способами можно разложить восемь различных писем по восьми различным конвертам, если в каждый конверт кладется только одно письмо?

6. Из трех математиков и десяти экономистов надо составить комиссию, состоящую из двух математиков и шести экономистов. Сколькими способами это можно сделать?