Каким уравнением задается парабола. Как построить параболу? Что такое парабола? Как решаются квадратные уравнения? Как строить параболу по квадратному уравнению

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.

Параболой называется геометрическое место точек плоскости, равноудаленных от заданной точки F

и заданной прямой dd, не проходящей через заданную точку. Это геометрическое определение выражает директориальное свойство параболы .

Директориальное свойство парабол

Точка F называется фокусом параболы, прямая d - директрисой параболы, середина O перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние p от фокуса до директрисы - параметром параболы, а расстояние p2от вершины параболы до её фокуса - фокусным расстоянием. Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок FM, соединяющий произвольную точку M параболы с её фокусом, называется фокальным радиусом точки

M. Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице

Геометрическое определение параболы , выражающее её директориальное свойство, эквивалентно её аналитическому определению - линии, задаваемой каноническим уравнением параболы:

Свойства

  • Она имеет ось симметрии, называемой осью параболы . Ось проходит через фокус и вершину перпендикулярно директрисе.
  • Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей.
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.

Функция одной действительной переменной: основные понятия, примеры.

Определение: Если каждому значению х числового множества X по правилу f соответствует единственное число множества Y, то говорят, что на числовом множестве X задана функция у = f(x), значения х определяются множеством значений, входящих в область определения функции (Х) .
В этом случае х называется аргументом, а у - значением функции. Множество X называется областью определения функции, Y - множеством значений функции.
Часто задают это правило формулой; например, у = 2х + 5. Указанный способ задания функции при помощи формулы называется аналитическим.
Функцияю можно так же задать графиком - Графиком функции у - f(x) называется множество точек плоскости, координаты х, у которых удовлетворяют соотношению у = f(x).

ОПР 1. Параболой называется геометрическое место точек на плоскости, расстояния от которых до некоторой точки, называемой фокусом, и до некоторой прямой, называемой директрисой, равны.

Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу. Начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.

Пусть М (х ; у ) – произвольная точка плоскости.

Обозначим через r расстояние от точки М до фокуса F, пусть r = FM,

через d – расстояние от точки до директрисы, а через р расстояние от фокуса до директрисы.

Величину р называют параметром параболы, его геометрический смысл раскрыт далее.

Точка М будет лежать на данной параболе в том и только в том случае, когда r = d .

В этом случае имеем

Уравнение

y 2 = 2 p x

называется каноническим уравнением параболы .

Свойства параболы

1. Парабола проходит через начало координат, т.к. координаты начала координат удовлетворяют уравнению параболы.

2. Парабола симметрична относительно оси ОХ, т.к. точки с координатами (x , y ) и (x , − y ) удовлетворяют уравнению параболы.

3. Если р > 0, то ветви параболы направлены вправо и парабола находится в правой полуплоскости.

4. Точка О называется вершиной параболы, ось симметрии (ось Ох ) - осью параболы.

  • 6. Теорема о разложении определителя на сумму определителей и следствия из нее.
  • 7. Теорема о разложении определителя по элементам строки(столбца) и следствия из неё.
  • 8. Операции над матрицами и их свойства. Доказать одно из них.
  • 9.Операция транспонирования матрицы и её свойства.
  • 10. Определение обратной матрицы. Доказать что у каждой обратимой матрицы существует лишь одно обращение.
  • 13. Блочные матрицы. Сложение и умножение блочных матриц. Теорема об определителе квазитреугольной матрицы.
  • 14. Теорема об определителе произведения матриц.
  • 15. Теорема о существовании обратной матрицы.
  • 16.Определение ранга матрицы. Теорема о базисном миноре и следствие из неё.
  • 17. Понятие о линейной зависимости строк и столбцов матрицы. Теорема о ранге матрицы.
  • 18. Методы вычисления ранга матрицы: метод окаймляющих миноров, метод элементарных преобразований.
  • 19. Применение элементарных преобразований только строк(только столбцов) к отысканию обратной матрицы.
  • 20. Системы линейных уравнений. Критерий совместности и критерий определенности.
  • 21. Решение совместной системы линейных уравнений.
  • 22. Однородные системы линейных уравнений. Теорема о существовании фундаментальной системы решений.
  • 23. Линейные операции над векторами и их свойства. Доказать одно из них.
  • 24. Определение разности двух векторов. Доказать что для любых векторов иразностьсуществует и единственна.
  • 25. Определение базиса, координаты вектора в базисе. Теорема о разложении вектора по базису.
  • 26. Линейная зависимость векторов. Свойства понятия линейной зависимости, доказать одно из них.
  • 28. Декартовы системы координат в пространстве, на плоскости и на прямой. Теорема о линейной комбинации векторов и следствия из нее.
  • 29. Вывод формул выражающих координаты точки в одной дск через координаты этой же точки в другой дск.
  • 30. Скалярное произведение векторов. Определение и основные свойства.
  • 31. Векторное произведение векторов. Определение и основные свойства.
  • 32. Смешанное произведение векторов. Определение и основные свойства.
  • 33. Двойное векторное произведение векторов. Определение и формула для вычисления(без доказательства).
  • 34. Алгебраические линии и поверхности. Теоремы об инвариантности(неизменности) порядка.
  • 35. Общие уравнения плоскости и прямой.
  • 36. Параметрические уравнения прямой и плоскости.
  • 37. Переход от общих уравнений плоскости и прямой на плоскости к их параметрическим уравнениям. Геометрический смысл коэффициентов а,в,с (а,в) в общем уравнении плоскости(прямой на плоскости).
  • 38. Исключение параметра из параметрических уравнений на плоскости(в пространстве), канонические уравнения прямой.
  • 39. Векторные уравнения прямой и плоскости.
  • 40. Общие уравнения прямой в пространстве, приведение к каноническому виду.
  • 41. Расстояние от точки до плоскости. Расстояние от точки до прямой. Другие задачи о прямых и плоскостях.
  • 42. Определение эллипса. Каноническое уравнение эллипса. Параметрические уравнения эллипса. Эксцентриситет эллипса.
  • 44. Определение параболы. Вывод канонического уравнения параболы.
  • 45. Кривые второго порядка и их классификация. Основная теорема о квп.
  • 45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.
  • 47.Определение линейного пространства. Примеры.
  • 49. Определение Евклидова пространства. Длина вектора. Угол между векторами. Неравенство Коши-Буняковского. Пример.
  • 50. Определение евклидова пространства. Теорема Пифагора. Неравенство треугольникаю Пример.
  • 44. Определение параболы. Вывод канонического уравнения параболы.

    Определение: Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а фиксированная прямая – директрисой параболы.

    Для вывода уравнения построим:

    Согласно определению:

    Так как у 2 >=0 то парабола лежит в правой полуплоскости. При х возрастающем от 0 до бесконечности
    . Парабола симметрична относительно Ох. Точка пересечения параболы со своей осью симметрии называется вершиной параболы.

    45. Кривые второго порядка и их классификация. Основная теорема о квп.

    Существует 8 типов КВП:

    1.эллипсы

    2.гиперболы

    3.параболы

    Кривые 1,2,3 – канонические сечения. Если пересечь конус плоскостью параллельной оси конуса то получим гиперболу. Если плоскостью параллельной образующей то параболу. Все плоскости не проходят через вершину конуса. Если любой другой плоскостью то эллипс.

    4.пара параллельных прямых y 2 +a 2 =0, a0

    5.пара пересекающихся прямых y 2 -k 2 x 2 =0

    6.одна прямая y 2 =0

    7.одна точка x 2 + y 2 =0

    8.пустое множество - пустая кривая (кр. без точек) x 2 + y 2 +1=0 или x 2 + 1=0

    Теорема(основная теорема о КВП): Уравнение вида

    a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0

    может представлять только кривую одного из указанных восьми типов.

    Идея доказательства состоит в том чтобы прейти к такой системе координат в которой уравнение КВП примет наиболее простой вид, когда тип кривой, которую оно представляет становится очевидным. Теорема доказывается с помощью поворота системы координат на такой угол при котором член с произведением координат исчезает. И с помощью параллельного переноса системы координат при котором исчезает или член с переменной х или член с переменной у.

    Переход к новой системе координат: 1. Параллельный перенос

    2. Поворот

    45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.

    ПВП - множество точек прямоугольные координаты которых удовлетворяют уравнению 2 степени: (1)

    Предполагается, что хотя бы один из коэффициентов при квадратах или при произведениях отличен от 0. Уравнение инвариантно относительно выбора системы координат.

    Теорема Любая плоскость пересекает ПВП по КВП за исключением особого случая, когда в сечении – вся плоскость.(ПВП может быть плоскостью или парой плоскостей).

    Существует 15 типов ПВП. Перечислим их указав уравнения, которыми они задаются в подходящих системах координат. Эти уравнения называются каноническими(простейшими). Строят геометрические образы соответствующие каноническим уравнениям методом параллельных сечений: Пересекают поверхность координатными плоскостями и плоскостями параллельными им. В результате получают сечения и кривые, которые дают представление о форме поверхности.

    1. Эллипсоид.

    Если a=b=c то получаем сферу.

    2. Гиперболоиды.

    1). Однополостный гиперболоид:

    Cечение однополостного гиперболоида координатными плоскостями: XOZ:
    - гипербола.

    YOZ:
    - гипербола.

    Плоскостью XOY:
    - эллипс.

    2). Двуполостной гиперболоид.

    Начало координат – точка симметрии.

    Координатные плоскости – плоскости симметрии.

    Плоскость z = h пересекает гиперболоид по эллипсу
    , т.е. плоскость z = h начинает пересекать гиперболоид при | h |  c . Сечение гиперболоида плоскостями x = 0 и y = 0 - это гиперболы.

    Числа a,b,c в уравнениях (2),(3),(4) называются полуосями эллипсоидов и гиперболоидов.

    3. Параболоиды.

    1). Эллиптический параболоид:

    Сечение плоскостью z = h есть
    , где
    . Из уравнения видно, что z  0 – это бесконечная чаша.

    Пересечение плоскостями y = h и x = h
    - это парабола и вообще

    2). Гиперболический параболоид:

    Очевидно, плоскости XOZ и YOZ – плоскости симметрии, ось z – ось параболоида. Пересечение параболоида с плоскостью z = h – гиперболы:
    ,
    . Плоскость z =0 пересекает гиперболический параболоид по двум осям
    которые являются ассимптотами.

    4. Конус и цилиндры второго порядка.

    1). Конус – это поверхность
    . Конус оюразован прямыми линиями, проходящими через начало координат 0 (0, 0, 0). Сечение конуса – это эллипсы с полуосями
    .

    2). Цилиндры второго порядка.

    Это эллиптический цилиндр
    .

    Какую бы прямую мы не взяли пересекающую эллипсы и параллельную оси Oz то она удовлетворяет этому уравнению. Перемещая эту прямую вокруг эллипса получим поверхность.

    Гиперболический цилиндр:

    На плоскости ХОУ это гипербола. Перемещаем прямую пересекающую гиперболу параллельно Oz вдоль гиперболы.

    Параболический цилиндр:

    На плоскости ХОУ это парабола.

    Цилиндрические поверхности образуются прямой(образующей) перемещающейся параллельно самой себе вдоль некоторой прямой(направляющей).

    10. Пара пересекающихся плоскостей

    11.Пара параллельных плоскостей

    12.
    - прямой

    13.Прямая – «цилиндр», построенный на одной точке

    14.Одна точка

    15.Пустое множество

    Основная теорема о ПВП: Каждая ПВП принадлежит к одному из 15 типов рассмотренных выше. Других ПВП нет.

    Поверхности вращения. Пусть задана ПДСК Oxyz и в плоскости Oyz линия е определяемая уравнением F(y,z)=0 (1). Составим уравнение поверхности полученной вращением этой линии вокруг оси Oz. Возьмем на линии е точку М(y,z). При вращении плоскости Oyz вокруг Oz точка М опишет окружность. Пусть N(X,Y,Z) – произвольная точка этой окружности. Ясно что z=Z.

    .

    Подставив найденные значения z и y в уравнение (1) получим верное равенство:
    т.е. координаты точкиN удовлетворяют уравнению
    . Таким образом любая точка поверхности вращения удовлетворяет уравнению (2). Не сложно доказать что если точкаN(x 1 ,y 1 ,z 1) удовлетворяет уравнению (2) то она принадлежит рассматриваемой поверхности. Теперь можно сказать что уравнение (2) есть искомое уравнение поверхности вращения.

    "