Аналитическая геометрия на плоскости. Поверхности второго порядка: Учебное пособие

§ 9. Понятие уравнения линии.

Задание линии при помощи уравнения

Равенство вида F(x, y) = 0 называется уравнением с двумя переменными x , у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа x = x 0 , у=у 0, удовлетворяют некоторому уравнению вида F(х, у)=0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными , которому удовлетворяют координаты каждой точки, лежащей на этой линии , и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(х, у) = 0» мы часто будем говорить короче: дана линия F (х, у) = 0.

Если даны уравнения двух линий F (х, у) = 0 и Ф(х, y) = Q, то совме­стное решение системы

Даёт все точки их пересечения. Точнее, каждая пара чисел , являющаяся сов­местным решением этой системы, определяет одну из точек пересечения.

1) х 2 2 = 8, х-у = 0;

2) х 2 2 -16x +4у +18 = 0, х + у = 0;

3) х 2 2 -2x +4у -3 = 0, х 2 + у 2 = 25;

4) х 2 2 -8x +10у+40 = 0, х 2 + у 2 = 4.

163. В полярной системе координат даны точки

Установить, какие из этих точек лежат на линии, определённой уравнением в полярных координатах  = 2 cos , и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить её на чертеже:)

164. На линии, определённой уравнением  =
, найти точки , полярные углы которых равны следующим числам: а) ,б) - , в) 0, г) . Какая линия определена данным уравнением?

(Построить её на чертеже.)

165. На линии, определённой уравнением  =
, найти точки ,полярные радиусы которых равны следующим числам: а) 1, б) 2,в)
. Какая линия определена данным уравнением? (Построить её на чертеже.)

166. Установить, какие линии определяются в полярных коор­динатах следующими уравнениями (построить их на чертеже):

1)  = 5; 2)  = ; 3)  = ; 4)  cos  = 2; 5)  sin  = 1;

6)  = 6 cos ; 7)  = 10 sin ; 8) sin  =

Важнейшим понятием аналитической геометрии является уравнение линии на плоскости .

Определение. Уравнением линии (кривой) на плоскости Oxy называется уравнение, которому удовлетворяют координаты x и y каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой линии (рис.1).

В общем случае уравнение линии может быть записано в виде F(x,y)=0 или y=f(x).

Пример. Найти уравнение множества точек, равноудаленных от точек А(-4;2), B(-2;-6).

Решение. Если M(x;y) – произвольная точка искомой линии (рис.2), то имеем AM=BM или

После преобразований получим

Очевидно, что это уравнение прямой MD – перпендикуляра, восстановленного из середины отрезка AB .

Из всех линий на плоскости особое значение имеет прямая линия . Она является графиком линейной функции, используемой в наиболее часто встречающихся на практике линейных экономико-математических моделях.

Различные виды уравнения прямой:

1)с угловым коэффициентом k и начальной ординатой b :

y = kx + b ,

где – угол между прямой и положительным направлением оси ОХ (рис. 3).

Особые случаи:

– прямая проходит через начало координат (рис.4):

биссектриса первого и третьего, второго и четвертого координатных углов:

y=+x, y=-x;

– прямая параллельна оси ОХ и сама ось ОХ (рис. 5):

y=b, y=0;

– прямая параллельна оси OY и сама ось ОY (рис. 6):

x=a, x=0;

2) проходящей в данном направлении (с угловым коэффициентом) k через данную точку (рис. 7):

.

Если в приведенном уравнении k – произвольное число, то уравнение определяет пучок прямых , проходящих через точку , кроме прямой , параллельной оси Oy.

Пример А(3,-2) :

а) под углом к оси ОХ;

б) параллельно оси OY.

Решение .

а) , y-(-2)=-1(x-3) или y=-x+1;

б) х=3.

3) проходящей через две данные точки (рис. 8):

.

Пример . Составить уравнение прямой, проходящей через точки А(-5,4), В(3,-2).

Решение . ,

4) уравнение прямой в отрезках (рис.9):

где a, b – отрезки, отсекаемые на осях соответственно Ox и Oy.

Пример . Составить уравнение прямой, проходящей через точку А(2,-1) , если эта прямая отсекает от положительной полуоси Oy отрезок, вдвое больший, чем от положительной полуоси Ox (рис. 10).

Решение . По условию b=2a , тогда . Подставим координаты точки А(2,-1):

Откуда a=1,5.

Окончательно получим:

Или y=-2x+3.

5) общее уравнение прямой:


Ax+By+C=0,

где a и b не равны одновременно нулю.

Некоторые важные характеристики прямых :

1) расстояние d от точки до прямой:

.

2) угол между прямыми и соответственно:

и .

3) условие параллельности прямых:

или .

4) условие перпендикулярности прямых:

или .

Пример 1 . Составить уравнение двух прямых, проходящих через точку А(5,1) , одна из которых параллельна прямой 3x+2y-7=0 , а другая перпендикулярна той же прямой. Найти расстояние между параллельными прямыми.

Решение . Рисунок 11.

1) уравнение параллельной прямой Ax+By+C=0 :

из условия параллельности ;

взяв коэффициент пропорциональности, равный 1, получим А=3, В=2;

т.о. 3x+2y+C=0;

значение С найдем, подставив координаты т. А(5,1),

3*5+2*1+С=0, откуда С=-17;

уравнение параллельной прямой – 3x+2y-17=0.

2) уравнение перпендикулярной прямой из условия перпендикулярности будет иметь вид 2x-3y+C=0;

подставив координаты т. А(5,1) , получим 2*5-3*1+С=0 , откуда С=-7;

уравнение перпендикулярной прямой – 2x-3y-7=0.

3) расстояние между параллельными прямыми можно найти как расстояние от т. А(5,1) до дано прямой 3x+2y-7=0:

.

Пример 2 . Даны уравнения сторон треугольника:

3x-4y+24=0 (AB), 4x+3y+32=0 (BC), 2x-y-4=0 (AC).

Составить уравнение биссектрисы угла АВС .

Решение . Вначале найдем координаты вершины В треугольника:

,


откуда x=-8, y=0, т.е. В(-8,0) (рис. 12).

По свойству биссектрисы расстояния от каждой точки M(x,y) , биссектрисы BD до сторон АВ и ВС равны, т.е.

,

Получаем два уравнения

x+7y+8=0, 7x-y+56=0.

Из рисунка 12 угловой коэффициент искомой прямой отрицательный (угол с Ох тупой), следовательно, нам подходит первое уравнение x+7y+8=0 или y=-1/7x-8/7.

Таким образом, агип. = с/2 = 2 и bгип.2 = с2 – агип.2 = 16 – 4 = 12. x2 y2 Уравнение искомой гиперболы имеет вид: − = 1. 4 12 Задача 11. Составить уравнение параболы, если известны ее фокус F(-7, 0) и уравнение директрисы x – 7 = 0. Решение Из уравнения директрисы имеем x = -p/2 = 7 или p = -14. Таким образом, уравнение искомой параболы 2 y = -28x. Задача 12. Установить, какие линии определяются следующими уравнениями. Сделать чертежи. 3 2 1. y = 7 − x − 6 x + 13, y < 7, x ∈ R. 2 Решение 3 2 y−7=− x − 6 x + 13. Возводим обе части 2 уравнения в квадрат: 9 2 (y − 7) 2 = 4 (x − 6 x + 13) или 4 (y − 7) = (x 2 − 6 x + 13). 2 9 Выделяем в правой части полный квадрат: 4 (x − 3) 2 (y − 7) 2 (y − 7) = (x − 3) + 4 или 2 2 − = −1. 9 4 9 Это – сопряженная гипербола. О′(3, 7), полуоси а = 2, b = 3. Заданное же уравнение определяет ветвь гиперболы, расположенную под прямой y – 7 = 0, т.к. y < 7. 1 y +1 2. x = 1 − . 2 2 Решение Область допустимых значений (х, у) определяется условиями ⎧ y +1 ⎪ ≥ 0, ⎧ y ≥ −1, ⎨ 2 → ⎨ ⎪ 1 − x ≥ 0, ⎩ x ≤ 1. ⎩ (y + 1)/2 = 4⋅(1 – x)2 → y + 1 = 8⋅(1 – x)2. Искомая кривая – часть параболы с вершиной в точке (1, -1). 41 3. y = −2 − 9 − x 2 + 8 x . Решение Искомая кривая – часть окружности: (y + 2)2 + (x – 4)2 = 52, y ≤ -2, x ∈ [-1, 9]. 4. y2 – x2 = 0. y Решение y=-x y=x (y – x)⋅(y + x) = 0 – две пересекающиеся прямые. x 0 Задача 13. Какую линию определяет уравнение x2 + y2 = x? Решение Запишем уравнение в виде x2 – x + y2 = 0. Выделим полный квадрат из слагаемых, содержащих х: x2 – x = (x – 1/2)2 – 1/4. 2 ⎛ 1⎞ 1 Уравнение принимает вид ⎜ x − ⎟ + y 2 = ⎝ 2⎠ 4 и определяет окружность с центром в точке (1/2, 0) и радиусом 1/2. Задача 14. Преобразовать уравнение x2 – y2 = a2 поворотом осей на 45° против часовой стрелки. Решение Так как α = -45°, то cos α = 2 2, sin α = − 2 2. Отсюда преобразование поворота принимает вид (см. п.4.2): ⎧ x = 2 2 ⋅ (x′ + y′) , ⎪ ⎨ ⎪ y = 2 2 ⋅ (y′ − x′) . ⎩ Подстановка в исходное уравнение дает х′у′ = а2/2. Проиллюстрируем приведение общих уравнений прямых второго порядка к каноническому виду на нескольких примерах, иллюстрирующих разные схемы преобразований. Задача 15. Привести уравнение 5x2 + 9y2 – 30x + 18y + 9 = 0 к каноническому виду и построить кривую. Решение Сгруппируем члены этого уравнения, содержащие одноименные координаты: (5x2 – 30x) + (9y2 + 18y) +9 = 0, или 5(x2 – 6x) + 9(y2 + 2y) +9 = 0. 42 y y′ Дополняем члены в скобках до полных квадратов: x 5(x2 – 6x + 9 – 9) + 9(y2 + 2y + 1 – 1) +9 = 0, или 0 5(x – 3)2 + 9(y + 1)2 = 45. 01 x′ Обозначаем x′ = x – 3, y′ = y + 1, x0 = 3, y0 = -1, то есть точка О1(3, -1) – центр кривой. Уравнение в новой системе координат принимает вид: x′2 y′2 5 x′ + 9 y′ = 45 → 2 2 + = 1 и определяет эллипс с полуосями 9 5 а = 3, b = 5,который в исходной системе координат имеет центр в точке О1(3, -1). 5 2 3 7 Задача 16. Определить вид кривой x + xy + y 2 = 2. 4 2 4 Решение Определим угол поворота осей по формуле (7) п.4.4: π 5 7 A = ,C = , B = 4 4 4 3 1 , A ≠ C и ϕ = arctg 2 2B 1 (= arctg − 3 = − . A−C 2 6) Подвергнем уравнение кривой преобразованию: ⎧ 3 1 ⎪ x = x′ cos ϕ − y′ sin ϕ = x′ ⎪ + y′ , 2 2 ⎨ ⎪ y = x′ sin ϕ + y′ cos ϕ = − x′ 1 + y′ 3 ⎪ ⎩ 2 2 и получим уравнение эллипса 2 2 5⎛ 3 1⎞ 3⎛ 3 1 ⎞⎛ 1 3 ⎞ 7⎛ 1 3 ⎞ ⎜ x′ + y′ ⎟ + ⎜ x′ + y′ ⎟⎜ − x′ + y′ ⎟ + ⎜ − x′ + y′ ⎟ = 2 . 4⎝ 2 2⎠ 2 ⎝ 2 2 ⎠⎝ 2 2 ⎠ 4⎝ 2 2 ⎠ x′ 2 + 2y′ 2 = 2. Задача 17. Установить, какую линию определяет уравнение x2 + y2 + xy – 2x + 3y = 0. Решение Перенесем начало координат в такую точку О1(х0, у0), чтобы уравнение не содержало х′ и у′ в первой степени. Это соответствует преобразованию координат вида (см. п.4.1): ⎧ x = x′ + x0 , ⎨ ⎩ y = y′ + y0 . Подстановка в исходное уравнение дает (x′ + x0)2 + (x′ + x0)(y′ + y0) + (y′ + y0)2 – 2(x′ + x0) + 3(y′ + y0) = 0 или x′2 + x′y′ + y′2 + (2x0 + y0 - 2)x′ + (x0 + 2y0 + 3)y′ + x02 + x0y0 + y02 - 2x0 + 3y0 =0. Положим 2x0 + y0 – 2 = 0, x0 + 2y0 + 3 = 0. 43 Решение полученной системы уравнений: x0 = 7/3 и y0 = -8/3. Таким образом, координаты нового начала координат O1(7/3, -8/3), а уравнение принимает вид x′2 + x′y′ + y′ 2 = 93/25. Повернем оси координат на такой угол α, чтобы исчез член х′у′. Подвергнем последнее уравнение преобразованию (см. п.4.2): ⎧ x′ = x′′ cos α − y′′ sin α, ⎨ ⎩ y′ = x′′ sin α + y′′ cos α и получим (cos2α + sinα⋅cosα + sin2α)⋅x′′2 + y ′′ y y′ x′′ (cos2α - sin2α)⋅x′′y′′ + 0 x + (sin2α - sinα⋅cosα + cos2α)⋅y′′ 2 = 93/25. Полагая cos2α - sin2α = 0, имеем tg2α = 1. α x′ Следовательно, α1,2 = ±45°. Возьмем α = 45°, cos45° = sin45° = 2 2 . 01 После соответствующих вычислений получаем 3 2 1 2 93 x ′′ + y ′′ = . 2 2 25 x′′2 y′′2 Итак, + =1 62 25 186 25 – уравнение эллипса с полуосями a = 62 5 ≈ 1,5; b = 186 5 ≈ 2,7 в дважды штрихованной системе координат, получаемой из исходной параллельным переносом осей координат в точку О1(7/3, -8/3) и последующим поворотом на угол 45° против часовой стрелки. Уравнение x2 + y2 + xy – 2x + 3y = 0 приведено к каноническому виду x′′2 y′′2 + 2 = 1. a2 b Задача 18. Привести к каноническому виду уравнение 4x2 – 4xy + y2 – 2x – 14y + 7 = 0. Решение Система уравнений для нахождения центра кривой (формула (6) п.4.4) ⎧ 4 x0 − 2 y0 − 1 = 0, ⎨ несовместна, ⎩ −2 x0 + y0 − 7 = 0 значит, данная кривая центра не имеет. Не меняя начала координат, повернем оси на некоторый угол α, соответствующие преобразования координат имеют ⎧ x = x′ cos α − y′ sin α, вид: ⎨ ⎩ y = x′ sin α + y′ cos α. 44 Перейдем в левой части уравнения к новым координатам: 4x2 – 4xy + y2 – 2x – 14y + 7 = (4cos2α - 4cosα⋅sinα + sin2α)⋅x′2 + + 2⋅(-4sinα⋅cosα - 2cos2α + 2sin2α + sinα⋅cosα)⋅x′y′ + + (4sin2α + 4sinα⋅cosα + cos2α)⋅y′2 + + 2⋅(-cosα - 7sinα)⋅x′ + 2⋅(sinα - 7cosα)⋅y′ + 7. (*) Постараемся теперь подобрать угол α так, чтобы коэффициент при х′у′ обратился в нуль. Для этого нам придется решить тригонометрическое уравнение -4sinα⋅cosα - 2cos2α + 2sin2α + sinα⋅cosα = 0. Имеем 2sin2α - 3sinα⋅cosα - 2cos2α = 0, или 2tg2α - 3tgα - 2 = 0. Отсюда tgα = 2, или tgα = -1/2. Возьмем первое решение, что соответствует повороту осей на острый угол. Зная tgα, вычислим cosα и sinα: 1 1 tg α 2 cos α = = , sin α = = . 1 + tg 2α 5 1 + tg 2α 5 Отсюда, и учитывая (*), находим уравнение данной кривой в системе х′,у′: 5 y′2 − 6 5 x′ − 2 5 y′ + 7 = 0. (**) Дальнейшее упрощение уравнения (**) производится при помощи параллельного перенесения осей Ох′, Оу′. Перепишем уравнение (**) следующим образом: 5 5(y′2 − 2 y′) − 6 5 x′ + 7 = 0. 5 Дополнив выражение в первой скобке до полного квадрата разности и компенсируя это дополнение надлежащим слагаемым, получим: 2 ⎛ 5⎞ 6 5⎛ 5⎞ ⎜ y′ − ⎟ − ⎜ x′ − ⎟ = 0. ⎝ 5 ⎠ 5 ⎝ 5 ⎠ Введем теперь еще новые координаты х′′,у′′, полагая x′ = x′′ + 5 5, y′ = y′′ + 5 5 , что соответствует параллельному перемещению осей на величину 5 5 в направлении оси Ох′ и на величину 5 5 в направлении оси Оу′. В координатах х′′у′′ уравнение данной линии принимает вид 6 5 2 y′′ = x′′ . 5 Это есть каноническое уравнение параболы с 3 5 параметром p = и с вершиной в начале координат системы х′′у′′. Парабола 5 расположена симметрично относительно оси х′′ и бесконечно простирается в 45 положительном направлении этой оси. Координаты вершины в системе х′у′ ⎛ 5 5⎞ ⎛ 1 3⎞ ⎜ ; ⎟ а в системе ху ⎜ − ; ⎟ . ⎝ 5 5 ⎠ ⎝ 5 5⎠ Задача 19. Какую линию определяет уравнение 4x2 - 4xy + y2 + 4x - 2y - 3 =0? Решение Система для нахождения центра кривой в данном случае имеет вид: ⎧ 4 x0 − 2 y0 + 2 = 0, y 2x-y+3=0 ⎨ 2x-y+1=0 ⎩ −2 x0 + y0 − 1 = 0. Эта система равносильна одному уравнению 2х0 – у0 2x-y-1=0 + 1 = 0, следовательно, линия имеет бесконечно много центров, составляющих прямую 2х – у + 1= 0. x Заметим, что левая часть данного уравнения 0 разлагается на множители первой степени: 4х2 – 4ху + у2 + 4х –2у –3 = = (2х – у +3)(2х – у – 1). Значит, рассматриваемая линия есть пара параллельных прямых: 2ху – у +3 = 0 и 2х – у – 1 = 0. Задача 20 1. Уравнение 5х2 + 6ху + 5у2 – 4х + 4у + 12 = 0 x′2 y′2 приводится к каноническому виду х′ 2 + 4у′ 2 + 4 = 0, или + = −1. 4 1 Это уравнение похоже на каноническое уравнение эллипса. Однако оно не определяет на плоскости никакого действительного образа, так как для любых действительных чисел х′,у′ левая часть его не отрицательна, а cправа стоит –1. Такое уравнение и аналогичные ему называются уравнениями мнимого эллипса. 2. Уравнение 5х2 + 6ху + 5у2 – 4х + 4у + 4 = 0 x′2 y′2 приводится к каноническому виду х′ 2 + 4у′ 2 = 0, или + = 0. 4 1 Уравнение также похоже на каноническое уравнение эллипса, но определяет не эллипс, а единственную точку: х′ = 0, у′ = 0. Такое уравнение и аналогичные ему называются уравнениями вырожденного эллипса. Задача 21. Составить уравнение параболы, если ее фокус находится в точке F(2, -1) и уравнение директрисы D: x – y – 1 = 0. Решение Пусть в некоторой системе координат х′О1у′ парабола имеет канонический вид у′2 = 2рх′. Если прямая у = х – 1 является ее директрисой, то оси системы координат х′О1у′ параллельны директрисе. 46 Координаты вершины параболы, совпадающей с новым началом координат О1, найдем как середину отрезка нормали к директрисе D, проходящей через фокус. Итак, ось О1х′ описывается уравнением у = -х + b, -1 = -2 + b. Откуда b = 1 и О1х′: у = -х + 1. Координаты точки K пересечения директрисы и оси О1х′ находим из условия: ⎧ y = x −1 ⎨ , → x К = 1, y K = 0. ⎩ y = −x + 1 Координаты нового начала координат О1(х0, у0): 1+ 2 3 −1 + 0 1 x0 = = ; y0 = = − . Оси новой системы координат повернуты 2 2 2 2 относительно старой на угол (-45°). Найдем р = KF = 2. Итак, уравнение параболы в старой системе координат получим, если подвергнем уравнение параболы y′ 2 = 2 2 ⋅x′ преобразованию (см. формулу (5) п.4.3): ⎧ ⎛ 3⎞ ⎛ 1⎞ ⎧ 2 ⎪ x′ = ⎜ x − 2 ⎟ cos(−45°) + ⎜ y + 2 ⎟ sin(−45°), ⎪ x′ = (x − y − 2), ⎪ ⎝ ⎠ ⎝ ⎠ ⎪ 2 ⎨ → ⎨ ⎪ y′ = − ⎛ x − sin(−45°) + ⎛ y + cos(−45°) 3⎞ 1⎞ ⎪ y′ = 2 (x + y − 1), ⎪ ⎜ ⎟ ⎜ ⎟ ⎪ ⎩ ⎝ 2⎠ ⎝ 2⎠ ⎩ 2 1 2 y′2 = 2 2 ⋅ x′ ⇒ (x + y − 1) 2 = 2 2 ⋅ (x − y − 2), 2 2 откуда искомое уравнение параболы имеет вид: х2 + 2ху + у2 – 6х + 2у + 9 = 0. Задача 22. Написать уравнение гиперболы, если известны ее эксцентриситет е = 5 , фокус F(2, -3) и уравнение директрисы y′ y D1 3х – у + 3 = 0. Решение 3 B Уравнение директрисы D1: у = 3х + 3 позволяет заключить, что новая ось координат Ох′ имеет вид y = (-1/3)x + b, проходит через точку F(2, - -7 -1 α x A 0 1 3), значит, −3 = − ⋅ 2 + b, откуда b = -7/3 и Ох′ O1 K 3 a/ 5 -7/3 1 7 F x′ задается уравнением y = − x − . 3 3 Пусть начало новой системы координат находится в точке О1(х0, у0). Найдем координаты точки К как координаты точки пересечения директрисы D1 и 47 ⎧3 x − y + 3 = 0, 8 9 оси Ох′′ из системы ⎨ → xK = − , y K = − . ⎩3y + x + 7 = 0 5 5 Геометрические свойства гиперболы, которая в новых осях координат x′2 y′2 Ох′у′ имеет вид 2 − 2 = 1, позволяют найти КF как расстояние от фокуса a b F(2, -3) до директрисы D1: 3х – у + 3 = 0. 3 ⋅ (2) − (−3) + 3 12 a a KF = = , O1K = = , O1F = c = a 2 + b 2 , 9 +1 10 e 5 a 12 O1K = O1F − KF ⇒ = a 2 + b2 − , 5 10 b2 так как e = 1 + 2 = 5, b 2 = 4a 2 . Значение а находим из уравнения a a 12 3 =a 5− и получаем a = . При этом b2 = 18. 5 10 2 x′2 y′2 Уравнение гиперболы в новых координатах имеет вид − = 1. 9 2 18 Координаты нового центра найдем, зная что точка К делит отрезок О1F в OK a 5 1 отношении λ = 1 = = : KF 12 10 4 ⎧ 1 ⎪ x0 + x F 4 5 ⎪ xK = , x0 = − , ⎪ 1+1 4 2 ⎨ откуда ⎪ 1 3 y0 + y F y0 = − . ⎪y = 4 , 2 ⎪ K ⎩ 1+1 4 Из ∆ АВО: sinα = 1 10 , cosα = 3 10 . Так как поворот совершается на угол (-α): sin(-α) = − 1 10 , cos(-α) = 3 10 , то формулы преобразований координат (см. (5) в п.4.3) принимают вид: ⎧ ⎛ 5⎞ 3 ⎛ 3 ⎞⎛ 1 ⎞ ⎧ ′ 1 ⎪ ⎪ x′ = ⎜ x + ⎟ ⎝ 2 ⎠ 10 ⎝ + ⎜ y + ⎟⎜ − 2 ⎠ ⎝ 10 ⎠⎟, ⎪ x = 10 (3x − y + 6) , ⎪ ⎨ → ⎨ ⎪ y′ = − ⎛ x + 5 ⎞ ⎛ − 1 ⎞ + ⎛ y + 3 ⎞ 3 , ⎪ y′ = 1 (x + 3 y + 7) ⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎪ ⎩ ⎝ 2 ⎠ ⎝ 10 ⎠ ⎝ 2 ⎠ 10 ⎩ 10 1 1 (3x − y + 6) (x + 3y + 7) 2 2 и уравнение гиперболы принимает вид 10 − 10 = 1, 92 18 4(3х – у +6)2 – (х + 3у + 7)2 = 180 или 7х2 – у2 – 6ху – 18у + 26х + 17 = 0. 48 Задача 23. Найти полярный угол отрезка, направленного из точки (5, 3) в точку (6, 2 3). Решение ρ = (6 − 5) 2 + (2 3 − 3) 2 = 2, cos ϕ = 1 2, sin ϕ = 3 2 ⇒ ϕ = 60°. (см. п.5.2). Задача 24. Составить уравнение прямой в полярных координатах, считая известными расстояние р от полюса до прямой и угол α от полярной оси до луча, направленного из полюса перпендикулярно к прямой. M (ρ, ϕ) Решение L Известны ОР = р, ∠ РОА = α, произвольная точка М P прямой L имеет координаты (ρ, ϕ). β Точка М лежит на прямой L в том и только в том случае, α когда проекция точки М на луч ОР совпадает с точкой Р, O A т.е. когда р = ρ⋅cosβ, где ∠ РОМ = β. Угол ϕ = α + β и уравнение прямой L принимает вид ρ⋅cos(ϕ - α) = p. Задача 25. Найти полярные уравнения указанных кривых: 1). x = a, a > 0 Решение ρ⋅cosϕ = a → ρ = a/cosϕ. a 0 ρ 2). y = b, b > 0 b Решение ρ⋅sinϕ = b → ρ = b/sinϕ. 0 ρ 3). (х2 + у2)2 = а2ху Решение: xy ≥ 0, a2 ρ = a ρ cos ϕ sin ϕ → ρ = sin 2ϕ, sin 2ϕ ≥ 0 . 4 2 2 2 2 Уравнение кривой в полярных координатах имеет a вид ρ = sin 2ϕ , ϕ∈ [ 0, π 2] ∪ [ π, 3π 2] и задает 2 двухлепестковую розу: Задача 26. Построить заданные в полярной системе координат линии: 1). ρ = 2a⋅sinϕ, a > 0. Решение y x 2 + y 2 = 2a ⋅ , x +y 2 2 a 2 2 x + y – 2ay = 0, ρ 0 49 x2 + (y – a)2 = a2. 2). ρ = 2 + cosϕ. Решение Линия получается, если каждый радиус-вектор окружности ρ = cosϕ увеличить на два. Найдем координаты контрольных точек: ϕ = 0, ρ = 3; ϕ = π/2, ρ = 2; ϕ = π, ρ = 1. 9 3). ρ = 4 − 5cos ϕ Решение 4 – 5⋅cosϕ > 0, cosϕ < 4/5, ϕ ∈ (arccos(4/5), 2π – arccos(4/5)). При этом ρ⋅(4 - 5⋅cosϕ) = 9. Переходя к декартовым координатам, получаем ⎛ x ⎞ x2 + y2 ⎜ 4 − 5 ⎟ = 9, ⎜ x2 + y 2 ⎟ ⎝ ⎠ 16 (x 2 + y 2) = (5 x + 9) , 2 4 x 2 + y 2 = 5 x + 9, 16x2 + 16y2 = 25x2 + 90x + 81, 9x2 + 90x – 16y2 +81 = 0, 2 2 (x + 5) 2 y 2 9(x + 5) – 16y = 144 → − 2 = 1 – правая ветвь 42 3 гиперболы при указанных ϕ. Кривую можно было построить по точкам, например, при ϕ = π ρ = 9/10. 4). ρ2⋅sin2ϕ = а2. Решение sin 2ϕ ≥ 0, ϕ∈ [ 0, π 2] ∪ [ π, 3π 2]. a ρ= . sin 2ϕ Перейдем к декартовым координатам, учтем, что ρ2 2 xy sin 2ϕ = 2 cos ϕ ⋅ sin ϕ ⋅ 2 = 2 , ρ x + y2 a2 2 тогда кривая принимает вид гиперболы: y = . x Задача 27. Какие линии задаются следующими параметрическими уравне- ниями: 50

определяет на плоскости кривую. Группа членов называется квадратичной формой, – линейной формой. Если в квадратичной форме содержатся только квадраты переменных, то такой ее вид называется каноническим, а векторы ортонормированного базиса, в котором квадратичная форма имеет канонический вид, называются главными осями квадратичной формы.
Матрица называется матрицей квадратичной формы. Здесь a 1 2 =a 2 1 . Чтобы матрицу B привести к диагональному виду, необходимо за базис взять собственные векторы этой матрицы, тогда , где λ 1 и λ 2 – собственные числа матрицы B.
В базисе из собственных векторов матрицы B квадратичная форма будет иметь канонический вид: λ 1 x 2 1 +λ 2 y 2 1 .
Эта операция соответствует повороту осей координат. Затем производится сдвиг начала координат, избавляясь тем самым от линейной формы.
Канонический вид кривой второго порядка: λ 1 x 2 2 +λ 2 y 2 2 =a , причем:
а) если λ 1 >0; λ 2 >0 – эллипс, в частности, при λ 1 =λ 2 это окружность;
б) если λ 1 >0, λ 2 <0 (λ 1 <0, λ 2 >0) имеем гиперболу;
в) если λ 1 =0 либо λ 2 =0, то кривая является параболой и после поворота осей координат имеет вид λ 1 x 2 1 =ax 1 +by 1 +c (здесь λ 2 =0). Дополняя до полного квадрата, будем иметь: λ 1 x 2 2 =b 1 y 2 .

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение . Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ 1 =-2, λ 2 =8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x 1 2 -2y 1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x 1 =1: x 1 =(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1 .
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
1 ,j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

; . (*)


Вносим выражения x и y в исходное уравнение и, после преобразований, получаем: .
Выделяем полные квадраты : .
Проводим параллельный перенос осей координат в новое начало: , .
Если внести эти соотношения в (*) и разрешить эти равенства относительно x 2 и y 2 , то получим: , . В системе координат (0*, i 1 , j 1) данное уравнение имеет вид: .
Для построения кривой строим в старой системе координат новую: ось x 2 =0 задается в старой системе координат уравнением x-y-3=0, а ось y 2 =0 уравнением x+y-1=0. Начало новой системы координат 0 * (2,-1) является точкой пересечения этих прямых.
Для упрощения восприятия разобьем процесс построения графика на 2 этапа:
1. Переход к системе координат с осями x 2 =0, y 2 =0, заданными в старой системе координат уравнениями x-y-3=0 и x+y-1=0 соответственно.

2. Построение в полученной системе координат графика функции.

Окончательный вариант графика выглядит следующим образом (см. Решение :Скачать решение

Задание . Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение .